Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299090

RESUMO

The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered for advancement to the preclinical development stage. To gain better insights into the molecular mechanism with the biological target, here, we conducted an investigation into their interactions with model nicked DNA (1) using different techniques. In this work, we observed the complexity of the mechanism of action of the compounds 2 and 3, in addition to their decomposition products: compound 4 and SN38. Using DOSY experiments, evidence of the formation of strongly bonded molecular complexes of SN38 derivatives with DNA duplexes was provided. The molecular modeling based on cross-peaks from the NOESY spectrum also allowed us to assign the geometry of a molecular complex of DNA with compound 2. Confirmation of the alkylation reaction of both compounds was obtained using MALDI-MS. Additionally, in the case of 3, alkylation was confirmed in the recording of cross-peaks in the 1H/13C HSQC spectrum of 13C-enriched compound 3. In this work, we showed that the studied compounds-parent compounds 2 and 3, and their potential metabolite 4 and SN38-interact inside the nick of 1, either forming the molecular complex or alkylating the DNA nitrogen bases. In order to confirm the influence of the studied compounds on the topoisomerase I relaxation activity of supercoiled DNA, the test was performed based upon the measurement of the fluorescence of DNA stain which can differentiate between supercoiled and relaxed DNA. The presented results confirmed that studied SN38 derivatives effectively block DNA relaxation mediated by Topo I, which means that they stop the machinery of Topo I activity.


Assuntos
Camptotecina/análogos & derivados , Camptotecina/metabolismo , Quebras de DNA de Cadeia Simples , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal , Inibidores da Topoisomerase II/farmacologia , Alquilação , Humanos
2.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068033

RESUMO

Conjugation, besides transformation and transduction, is one of the main mechanisms of horizontal transmission of genetic information among bacteria. Conjugational transfer, due to its essential role in shaping bacterial genomes and spreading of antibiotics resistance genes, has been widely studied for more than 70 years. However, new and intriguing facts concerning the molecular basis of this process are still being revealed. Most recently, a novel family of conjugative relaxases (Mob proteins) was distinguished. The characteristic feature of these proteins is that they are not related to any of Mobs described so far. Instead of this, they share significant similarity to tyrosine recombinases. In this study MobK-a tyrosine recombinase-like Mob protein, encoded by pIGRK cryptic plasmid from the Klebsiella pneumoniae clinical strain, was characterized. This study revealed that MobK is a site-specific nuclease and its relaxase activity is dependent on both a conserved catalytic tyrosine residue (Y179) that is characteristic of tyrosine recombinases and the presence of Mg2+ divalent cations. The pIGRK minimal origin of transfer sequence (oriT) was also characterized. This is one of the first reports presenting tyrosine recombinase-like conjugative relaxase protein. It also demonstrates that MobK is a convenient model for studying this new protein family.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética , DNA Bacteriano/genética , Endodesoxirribonucleases/metabolismo , Klebsiella pneumoniae/enzimologia , Plasmídeos/genética , Recombinação Genética , Proteínas de Bactérias/genética , Sequência de Bases , Endodesoxirribonucleases/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crescimento & desenvolvimento , Plasmídeos/metabolismo
3.
Protein Expr Purif ; 170: 105594, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032771

RESUMO

Single-chain variable fragment (scFv) antibodies are fusion proteins of the variable regions of the heavy and light chains of immunoglobulins connected with a short linker peptide. They possess unique and superior features compared to whole antibodies for immunotherapy of various carcinomas, including hematologic B-cell malignancies. In the presented study we obtained efficient production of the recombinant anti-CD22 scFv in Escherichia coli expression system. The active recombinant protein was successfully recovered from inclusion bodies. Assays were performed to assess the in vitro targeting properties and specificity of the obtained anti-CD22 scFv antibody in the CD22 positive and negative lymphoma cell lines.


Assuntos
Imunoconjugados/química , Linfócitos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Anticorpos de Cadeia Única/genética , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Imunoconjugados/metabolismo , Corpos de Inclusão/química , Células K562 , Linfócitos/patologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/química , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo
4.
BMC Microbiol ; 19(1): 254, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722681

RESUMO

BACKGROUND: Gene overlapping is a frequent phenomenon in microbial genomes. Excluding so-called "trivial overlapping", there are significant implications of such genetic arrangements, including regulation of gene expression and modification of protein activity. It is also postulated that, besides gene duplication, the appearance of overlapping genes (OGs) is one of the most important factors promoting a genome's novelty and evolution. OGs coding for in-frame proteins with different functions are a particularly interesting case. In this study we identified and characterized two in-frame proteins encoded by OGs on plasmid pIGRK from Klebsiella pneumoniae, a representative of the newly distinguished pHW126 plasmid family. RESULTS: A single repR locus located within the replication system of plasmid pIGRK encodes, in the same frame, two functional polypeptides: a full-length RepR protein and a RepR' protein (with N-terminal truncation) translated from an internal START codon. Both proteins form homodimers, and interact with diverse DNA regions within the plasmid replication origin and repR promoter operator. Interestingly, RepR and RepR' have opposing functions - RepR is crucial for initiation of pIGRK replication, while RepR' is a negative regulator of this process. Nevertheless, both proteins act cooperatively as negative transcriptional regulators of their own expression. CONCLUSIONS: Regulation of the initiation of pIGRK replication is a complex process in which a major role is played by two in-frame proteins with antagonistic functions. In-frame encoded Rep proteins are uncommon, having been described in only a few plasmids. This is the first description of such proteins in a plasmid of the pHW126 family.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Klebsiella pneumoniae/metabolismo , Plasmídeos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Proteínas de Ligação a DNA/química , Duplicação Gênica , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Multimerização Proteica , Origem de Replicação
5.
Mol Biotechnol ; 61(10): 763-773, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347014

RESUMO

Escherichia coli is one of the most widely used hosts for the production of heterologous proteins. Within this host, the choice of cloning vector constitutes a key factor for a satisfactory amplified expression of a target gene. We aimed to develop novel, unpatented expression vectors that enable the stable maintenance and efficient overproduction of proteins in E. coli. A series of expression vectors based on the ColE1-like pIGDM1 plasmid were constructed. The vectors named pIGDMCT7RS, pIGDM4RS and pIGDMKAN carry various antibiotic resistance genes: chloramphenicol, ampicillin or kanamycin, respectively. Two derivatives contain the inducible T7 promoter while the third one bears the constitutive pms promoter from a clinical strain of Klebsiella pneumoniae. The pIGDM1-derivatives are compatible with other ColE1-like plasmids commonly used in molecular cloning. The pIGDMCT7RS and pIGDM4RS vectors contain genes encoding AGA and AGG tRNAs, which supplement the shortage of these tRNAs, increasing the efficiency of synthesis of heterologous proteins. In conclusion, pIGDMCT7RS, pIGDM4RS and pIGDMKAN vectors, with significantly improved features, including compatibility with vast majority of other plasmids, were designed and constructed. They enable a high-level expression of a desired recombinant gene and therefore constitute a potential, valuable tool for pharmaceutical companies and research laboratories for their own research or for the production of recombinant biopharmaceuticals.


Assuntos
Resistência Microbiana a Medicamentos , Escherichia coli/genética , Plasmídeos/genética , Clonagem Molecular , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Klebsiella pneumoniae/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Pharm Res ; 36(6): 79, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949841

RESUMO

PURPOSE: Identification of human insulin analogs' impurity with a mass shift +14 Da in comparison to a parent protein. METHODS: The protein sequence variant was detected and identified with the application of peptide mapping, liquid chromatography, tandem mass spectrometric analysis, nuclear magnetic resonance spectroscopy (NMR) and Edman sequencing. RESULTS: The misincorporated lysine (Lys) at asparagine (Asn) position A21 was detected in recombinant human insulin and its analogs. CONCLUSIONS: Although there are three asparagine residues in the insulin derivative, the misincorporation of lysine occurred only at position A21. The process involves G/U or A/U wobble base pairing.


Assuntos
Asparagina/química , Escherichia coli/metabolismo , Insulinas/metabolismo , Lisina/análise , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/genética , Humanos , Insulinas/química , Peptídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem/métodos
7.
Protein Expr Purif ; 157: 63-69, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735706

RESUMO

The number of people with diabetes is estimated to be over 370 million, in 2030 it will increase to 552 million. In Poland, the number of people with diabetes is estimated to be 3.5 million (9.1%). According to the estimates of the International Diabetes Federation, the percentage of patients in the adult Polish population will increase to around 11% over the next 20 years. Despite the appearance of insulin analogues on the pharmaceutical market, insulin delivery is still the most effective method of pharmacotherapy in cases of extremely high hyperglycemia. A new bacterial host strain (Escherichia coli 20) was obtained at the Institute of Biotechnology and Antibiotics and a new pIBAINS expression vector was constructed that provides greater efficiency in the production of recombinant human insulin. In the IBA Bioengineering Department, successful attempts were made to produce recombinant human insulin on a laboratory and quarter-technical scale, and several batches were performed on a semi-technical scale. The production process has been divided into several stages: 1. biosynthesis of insulin in the fermenter, 2. isolation, purification and dissolution of inclusion bodies, 3. protein renaturation, 4. enzymatic reaction with trypsin, 5. multi-stage purification of insulin using low-pressure and HPLC techniques. At each stage of insulin production, qualitative and quantitative analyses were performed to confirm identity and purity. In particular, the molecular weight of insulin, the amount of insulin and the content of protein impurities were studied. The results of these experiments are presented in this work.


Assuntos
Escherichia coli/genética , Insulina/genética , Proteínas Recombinantes/genética , Reatores Biológicos , Cromatografia Líquida de Alta Pressão/métodos , Expressão Gênica , Vetores Genéticos/genética , Humanos , Corpos de Inclusão/genética , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Insulina/química , Insulina/isolamento & purificação , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
Pharm Res ; 35(7): 143, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29770892

RESUMO

PURPOSE: Isolation and identification of unknown impurities of recombinant insulin lispro (produced at IBA) formed during accelerated stability testing of pharmaceutical solutions. For comparative purposes also commercially available formulations of recombinant human insulin (Humulin S®; Lilly), recombinant insulin lispro (Humalog®; Lilly), recombinant insulin aspart (NovoRapid® Penfill®; Novo Nordisk), recombinant insulin detemir (Levemir®; Novo Nordisk) and recombinant insulin glargine (Lantus®; Sanofi-Aventis) were analyzed. METHODS: The impurities of insulin analogs were isolated by RP-HPLC and identified with peptide mass fingerprinting using MALDI-TOF/TOF mass spectrometry. RESULTS: The identified derivatives were N-terminally truncated insulin analog impurities of decreased molecular mass of 119, 147 and 377 Da related to the original protein. The modifications resulting in a mass decrease were detected at the N-terminus of B chains of insulin lispro, insulin aspart, human insulin, insulin glargine, insulin detemir in all tested formulations. To our knowledge it is the first time that these impurities are reported. CONCLUSIONS: The following derivatives formed by truncation of the B chain in insulin analogs were identified in pharmaceutical formulations: desPheB1-N-formyl-ValB2 derivative, desPheB1 derivative, pyroGluB4 derivative.


Assuntos
Química Farmacêutica/métodos , Insulina/análogos & derivados , Insulina/análise , Composição de Medicamentos/métodos , Insulina/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
Virol J ; 15(1): 13, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29334981

RESUMO

BACKGROUND: The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research. The aim of this study was to obtain diagnostically valuable mAbs with broad strain specificity against H5-subtype AIVs. RESULTS: We applied the hybridoma method to produce anti-HA mAbs. The cloning and screening procedures resulted in the selection of 7 mouse hybridoma cell lines and their respective antibody clones. Preliminary immunoreactivity studies showed that these newly established mAbs, all of the IgG1 isotype, had high specificity and broad-range activities against the H5 HAs. However, these studies did not allow for a clear distinction among the selected antibodies and mAb-secreting hybridoma clones. To differentiate the analyzed mAbs and determine the exact number of hybridoma clones, peptide mapping of the Fc and Fab fragments was performed using a Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF/TOF) mass spectrometer. Detailed analyses of the acquired MS and MS/MS spectra confirmed that the Fc fragments constituted highly conserved species- and isotype-immunoglobulin components, whereas the Fab fragments exhibited considerable variation in the sequences that determine antibody specificity. This approach enabled unambiguous characterization of the selected mAbs according to their peptide composition. As a result, 6 different clones were distinguished. CONCLUSIONS: Our work provided a unique panel of anti-H5 HA mAbs, which meets the demand for novel, high-specificity analytical tools for use in serologic surveillance. Applications of these mAbs in areas other than diagnostics are also possible. Moreover, we demonstrated for the first time that peptide mapping of antibody fragments with mass spectrometry is an efficient method for the differentiation of antibody clones and relevant antibody-producing cell lines. The method may be successfully used to characterize mAbs at the protein level.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Fragmentos Fab das Imunoglobulinas/imunologia , Espectrometria de Massas , Camundongos
10.
PLoS One ; 12(3): e0172600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296883

RESUMO

The discovery of insulin led to a revolution in diabetes management. Since then, many improvements have been introduced to insulin preparations. The availability of molecular genetic techniques has enabled the creation of insulin analogs by changing the structure of the native protein in order to improve the therapeutic properties. A new expression vector pIBAINS for production of four recombinant human insulin (INS) analogs (GKR, GEKR, AKR, SR) was constructed and overexpressed in the new E. coli 20 strain as a fusion protein with modified human superoxide dismutase (SOD). The SOD gene was used as a signal peptide to enhance the expression of insulin. SOD::INS was manufactured in the form of insoluble inclusion bodies. After cleavage of the fusion protein with trypsin, the released insulin analogs were refolded and purified by reverse-phase high performance liquid chromatography (RP-HPLC). Elongation of chain A, described here for the first time, considerably improved the stability of the selected analogs. Their identity was confirmed with mass spectrometric techniques. The biological activity of the insulin derivatives was tested on rats with experimental diabetes. The obtained results proved that the new analogs described in this paper have the potential to generate prolonged hypoglycemic activity and may allow for even less frequent subcutaneous administration than once-a-day. When applied, all the analogs demonstrate a rapid onset of action. Such a combination renders the proposed biosynthetic insulin unique among already known related formulations.


Assuntos
Escherichia coli/genética , Hipoglicemiantes/farmacologia , Insulina/análogos & derivados , Insulina/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Solubilidade
11.
Pharm Res ; 32(7): 2450-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25663326

RESUMO

PURPOSE: Insulin lispro is a rapid-acting insulin analogue produced by recombinant DNA technology. As a biosynthetic drug, the protein undergoes strict monitoring aiming for detection and characterization of impurities. The goal of this study was to isolate and identify a derivative of insulin lispro formed during biosynthesis. METHODS: For this purpose, ion exchange chromatography in combination with endoproteinase Glu-C digestion, MALDI-TOF/TOF mass spectrometry and Edman sequencing were employed. RESULTS: Ion exchange chromatography analysis of related proteins in development batches of recombinant insulin lispro revealed the existence of unknown derivative in excess of the assumed limit. Its molecular mass was 42 Da higher than the theoretical mass of Lys(B31) insulin lispro--one of the expected process-related intermediates. Endoproteinase Glu-C cleavage enabled indication of the modified peptide. Tandem mass spectrometry (MS/MS) allowed to explore the location and type of the modification. The 42 amu shift was present in the mass of y-type ions, while b-type ions were in agreement with theoretical values. It suggested that the modification is present on B31 lysine. Further inquiry revealed the presence of two diagnostic ions for lysine acetylation at m/z 143.1 and 126.1. In addition, the peptide was isolated and sequenced by Edman degradation. Standards of phenylthiohydantoin derivatives of N-ε-acetyl-L-lysine and N-ε-trimethyl-L-lysine, not available commercially, were synthesized in the laboratory. The retention time of the modified residue confirmed its identity as N-ε-acetyl-L-lysine. CONCLUSIONS: The derivative of insulin lispro formed during biosynthesis of the drug was identified to be N-ε-acetyl-L-lysine (B31) insulin lispro.


Assuntos
Escherichia coli/metabolismo , Insulina Lispro/análogos & derivados , Insulina Lispro/isolamento & purificação , Lisina/análogos & derivados , Proteínas Recombinantes/isolamento & purificação , Tecnologia Farmacêutica/métodos , Acetilação , Sequência de Aminoácidos , Cromatografia por Troca Iônica , Escherichia coli/genética , Insulina Lispro/metabolismo , Lisina/genética , Lisina/isolamento & purificação , Lisina/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
12.
Microb Cell Fact ; 13(1): 113, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25158991

RESUMO

BACKGROUND: Numerous bacterial human growth hormone (hGH) expression methods under conventional fermentation and induction conditions have been described. Despite significant progress made in this area over the past several years, production of recombinant hGH by using cellular expression systems still requires further optimization. Fusion of the ubiquitin (Ub) tag to the hGH protein allowed to increase of the overall efficiency of the biosynthesis and improve the protein stability. Ub is a protein composed of 76 amino acid residues with a molecular mass of 8.6 kDa, expressed in all eukaryotes. This protein is an element of the universal protein modification system, which does not occur in bacteria, and is a useful carrier for heterologous proteins obtained through expression in Escherichia coli. Purification of Ub-fusion proteins is easier than that of unconjugated recombinant proteins, and Ub can be removed by deubiquitinating proteases (DUBs or UBPs). RESULTS AND CONCLUSION: In the present study the UBPD2C protease, a stable UBP1 analog, was produced as a recombinant protein in E. coli and used for production of recombinant human growth hormone (rhGH). hGH was expressed as a fusion protein with Ub as a tag. Our findings show that the UBPD2C protease is very effective in removing the Ub moiety from recombinant Ub-fused hGH. The described approach enables obtaining a considerable yield of rhGH in a purity required for pharmaceutical products.


Assuntos
Endopeptidases/metabolismo , Escherichia coli/genética , Hormônio do Crescimento Humano/metabolismo , Endopeptidases/genética , Escherichia coli/metabolismo , Expressão Gênica , Hormônio do Crescimento Humano/genética , Humanos , Engenharia Metabólica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
Acta Biochim Pol ; 61(2): 349-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936522

RESUMO

A biosynthetic human insulin precursor displayed enhanced susceptibility to deamidation at one particular site. The present study was undertaken to monitor progress of precursor deamidation at successive manufacturing stages. MALDI-TOF/TOF MS in combination with controlled endoproteinase Glu-C and endoproteinase Asp-N proteolysis was used for rapid and unambiguous determination of deamidated residue within the investigated structure. Close inspection of isotopic distribution patterns of peptides resulting from enzymatic digestion enabled determination of distinct precursor forms occurring during the production process. Asn, Asp, isoAsp and succinimide derivatives of the amino acid at position 26 were unambiguously identified. These modifications are related to the leader peptide of a precursor encompassing amino acid sequence corresponding to that of superoxide dismutase [Cu-Zn] (SOD1 1, EC=1.15.1.1). Monitoring of precursor deamidation process at successive manufacturing stages revealed that the protein folding stage was sufficient for a prominent replacement of asparagine by aspartic and isoaspartic acid and the deamidated human insulin precursor constituted the main manufactured product. Conversion proceeded through a succinimide intermediate. Significant deamidation is associated with the presence of SNG motif and confirms results achieved previously on model peptides. Our findings highlight an essential role of the specific amino acid sequence on accelerated rate of protein deamidation. To our knowledge, this is the first time that such a dramatic change in the relative abundance of Asp and isoAsp resulting from protein deamidation process is reported.


Assuntos
Asparagina/química , Insulina/biossíntese , Precursores de Proteínas/biossíntese , Superóxido Dismutase/química , Sequência de Aminoácidos , Asparagina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Indústria Farmacêutica , Insulina/análise , Ácido Isoaspártico/química , Ácido Isoaspártico/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Precursores de Proteínas/análise , Controle de Qualidade , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
14.
J Proteome Res ; 8(10): 4633-40, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19642706

RESUMO

Astrocytes are supportive cells, necessary for ensure optimal environment for neural cells functioning. They are involved in extracellular K+ level regulation and neurotransmitters removal. They are also dependent for myelination and synapses formation. They may make a contribution in signal propagation in the central nervous system, for example, through Ca2+ signaling. With the use of neonatal pure astrocyte cell culture, we investigated changes in astrocyte's proteomes under the influence of morphine. We found 10 major proteins, which show different expression between physiological cell culture and morphine treatment. With 2D gel electrophoresis and nanoLC-ESI-MS/MS, we identified proteins and characterized their potential role in morphine dependence. Observed differences were also confirmed by Western blotting. Our data suggests a role for astrocytes in the formation of the morphine dependence at the molecular level. This finding may support interpretation of causes of morphine dependence formation based only on behavioral data.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/citologia , Morfina/farmacologia , Proteoma , Proteômica/métodos , Animais , Vias Biossintéticas , Células Cultivadas , Cromatografia Líquida , Proteínas do Citoesqueleto , Eletroforese em Gel Bidimensional , Análise dos Mínimos Quadrados , Masculino , Chaperonas Moleculares , Dependência de Morfina/metabolismo , Proteínas/análise , Proteínas/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Ratos , Ratos Wistar
15.
J Sep Sci ; 32(8): 1200-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19296477

RESUMO

Using primary neuronal cell culture assays, combined with 2-D gel electrophoresis and capillary LC-MS, we identified differences in proteomes between control and morphine-treated cells. Statistically significant differences were observed among 26 proteins. Nineteen of them were up-regulated, while seven were down-regulated in morphine-treated cell populations. The identified proteins belong to classes involved in energy metabolism, associated with oxidative stress, linked with protein biosynthesis, cytoskeletal ones, and chaperones. The detected proteins demand further detailed studies of their biological roles in morphine addiction. It is crucial to confirm observed processes in vivo in order to reveal the nature and importance of the biological effect of proteome changes after morphine administration. Further investigations may lead to the discovery of new proteome-based effects of morphine on living organisms.


Assuntos
Analgésicos Opioides/farmacologia , Corpo Estriado/citologia , Morfina/farmacologia , Neurônios , Proteoma/análise , Animais , Eletrocromatografia Capilar/métodos , Células Cultivadas , Eletroforese em Gel Bidimensional/métodos , Humanos , Neurônios/química , Neurônios/efeitos dos fármacos , Ratos , Espectrometria de Massas em Tandem/métodos
16.
Mass Spectrom Rev ; 26(3): 432-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17405153

RESUMO

This review provides an outline of the most important proteomic applications in the study of neurodegenerative disorders including Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), and prion diseases, and also discusses advances in cancer and addiction. One of the scopes is to illustrate the potential of proteomics in the biomarkers discovery of these diseases. Finally, this article comments the advantages and drawbacks of the most commonly used techniques and methods for samples preparation.


Assuntos
Perfilação da Expressão Gênica/métodos , Espectrometria de Massas/métodos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Neurociências/métodos , Proteoma/análise , Proteômica/métodos , Biomarcadores/análise , Diagnóstico por Computador/métodos , Humanos , Mapeamento de Peptídeos/métodos , Manejo de Espécimes/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-17113834

RESUMO

Sample preparation is one of the most crucial processes in proteomics research. The results of the experiment depend on the condition of the starting material. Therefore, the proper experimental model and careful sample preparation is vital to obtain significant and trustworthy results, particularly in comparative proteomics, where we are usually looking for minor differences between experimental-, and control samples. In this review we discuss problems associated with general strategies of samples preparation, and experimental demands for these processes.


Assuntos
Proteínas/análise , Proteômica/métodos , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Peptídeos/análise , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação
18.
FEBS J ; 273(22): 5113-20, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17087727

RESUMO

Dynorphin-converting enzymes constitute a group of peptidases capable of converting dynorphins to enkephalins. Through the action of these enzymes, the dynorphin-related peptides bind to delta-opioid instead of kappa-opioid receptors, leading to a change in the biological function of the neuropeptides. In this article, we describe the identification of the protein bikunin as an endogenous, competitive inhibitor of a dynorphin-converting enzyme in human cerebrospinal fluid. This protein is present together with its target enzyme in the same body fluids. The K(M) value of the convertase was found to be 9 microm, and the K(i) value of the inhibitor was 1.7 nm. The finding indicates that bikunin may play a significant role as a regulatory mechanism of neuropeptides, where one bioactive peptide is converted to a shorter sequence, which in turn, can affect the action of its longer form.


Assuntos
alfa-Globulinas/líquido cefalorraquidiano , alfa-Globulinas/fisiologia , Cisteína Endopeptidases/líquido cefalorraquidiano , alfa-Globulinas/isolamento & purificação , Sequência de Aminoácidos , Proteínas do Líquido Cefalorraquidiano/isolamento & purificação , Proteínas do Líquido Cefalorraquidiano/fisiologia , Inibidores de Cisteína Proteinase/líquido cefalorraquidiano , Inibidores de Cisteína Proteinase/isolamento & purificação , Humanos , Dados de Sequência Molecular
19.
Int J Mol Med ; 18(4): 775-84, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964434

RESUMO

Although a series of proteins in the brain have been shown to be qualitatively or quantitatively dysregulated following morphine administration, a systematic proteomic study has not been carried out so far. We therefore aimed to show the effect of morphine on protein levels in the rat brain. For this purpose rats were given a morphine base in subcutaneously placed pellets and subsequently the cerebral cortex, hippocampus and striatum were taken for proteomic studies after three days. Extracted proteins were run on two-dimensional gel electrophoresis, scanned and quantified by specific software. Proteins with significantly different levels were analysed by mass spectrometry (MALDI-TOF-TOF). Twenty-six proteins were found to be differentially expressed and were unambiguously identified. Dysregulated proteins were from several protein pathways and cascades including signaling, metabolic, protein handling, antioxidant and miscellaneous classes. These findings represent an initial approach to the generation of a 'morphinome' and may form the basis for further protein chemical studies as a valuable analytical tool. Moreover, the study reveals morphine-regulated proteins in different brain areas and indicates the pathways involved following morphine administration in the rat, the main species for pharmacological studies in the field.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Morfina/farmacologia , Proteoma/análise , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Implantes de Medicamento , Eletroforese em Gel Bidimensional , Hipocampo/metabolismo , Masculino , Morfina/administração & dosagem , Proteínas/análise , Proteômica/métodos , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Neurochem Int ; 49(4): 401-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16581157

RESUMO

The aim of this study was to reveal potential markers associated with drug dependence, using the proteomic approach. Gels containing samples derived from morphine-treated and control animals were compared and analyzed. Inspection of protein profiles, following TCA/acetone precipitation and the use of nano-scale liquid chromatography coupled to tandem mass spectrometry, allowed for identification of eleven potential dependence markers, mainly cytoplasmic and mitochondrial enzymes, e.g. proteins that belong to GTPase and GST superfamilies, ATPase, asparaginase or proteasome subunit p27 families.


Assuntos
Química Encefálica/fisiologia , Dependência de Morfina/metabolismo , Proteoma/metabolismo , Animais , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Masculino , Espectrometria de Massas , Nanotecnologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA